Conjugate Hib Vaccines and their Combinations: Present Success and Future Possibilities

HENRY SHINEFIELD, MD, STEVEN BLACK, MD
Kaiser Permanente Pediatric Vaccine Study Center, Northern California, USA

Introduction

The introduction of conjugate *Haemophilus influenzae* type b (Hib) vaccines has had a dramatic impact on the incidence of Hib systemic disease. Following the demonstration of the effectiveness of these vaccines in two clinical trials in the United States of America, two different conjugate vaccines were licensed for use in the USA in late 1990 as infant immunogens: *Haemophilus* b conjugate vaccine – diphtheria CRM197 protein conjugate, (HbOC) (HibTITER, Lederle-Praxis Biologicals), and *Haemophilus* b conjugate vaccine – meningococcal protein conjugate (PRP-OMP) (PedvaxHib, Merck Sharp & Dohme). Following administration of one of the conjugates – HbOC – in a Health Maintenance Organization (HMO) population, a single case of systemic Hib disease in an unvaccinated infant was seen in the entire year of 1992. This was a remarkable 97% fall in disease rate, that occurred in the Northern California Kaiser Permanente Medical Care Program (NC-KPMCP). The NC-KPMCP has 2.5 million members and experienced an average of 70 cases annually in the less than five years age group from 1984 to 1988.

Conjugate Hib vaccines

While current conjugate Hib vaccines are effective in reducing the incidence of systemic Hib diseases, it would be advantageous to combine these vaccines with other immunogens such as diphtheria, pertussis, tetanus (DPT) vaccines that are routinely administered to infants. This would reduce the number of injections that infants are given, minimizing the trauma to the infants receiving the vaccine, and would encourage parental and physician acceptance.

In the USA, the HbOC vaccine is normally given at two, four and six months of age, concurrently with DPT, followed by a booster of both vaccines at the age of 15 to 18 months. At present it is necessary to give the vaccines as two separate injections a teach of these visits. Parents may be reluctant to subject their infants to two injections at the same time, generating unnecessary return visits or reduced compliance with recommended vaccination schedules. The second vaccine is also associated with additional administration costs at each visit. It would be worthwhile to combine DPT with HbOC or other conjugate vaccines into a single preparation.

A number of Hib conjugate vaccine combinations have been used in clinical trials (Table 1).

<p>| TABLE 1 |</p>
<table>
<thead>
<tr>
<th>DPT/Hib combinations</th>
</tr>
</thead>
</table>
| 1. DPT-HbOC: No Interference noted
Synergy noted in one study |
| 2. DPT-PRP/D: Decrease D anti-diphtheria and anti pertussis antibody |
| 3. DPT-PRP/T: Decrease anti-pertussis and anti-PRP antibody |
| 4. Combinations with acellular pertussis/DT
DTaP-HbOC: No Interference noted |

The trial at NC-KPMCP involved over 10,000 infants. Comparisons were made between infants aged two; four and six months, who received separate injections of HbOC and DPT in each thigh, and infants who received a single 0.5 ml injection of the combined product. Comparisons of local and systemic reactions, measurement of temperature elevation, emergency room visits and hospitalizations revealed no difference between the groups. In addition, there was no evidence that the combined vaccine was causally related to Sudden Infant Death Syndrome (Table 2). Infants were bled one month after their third injection. Immunologic results are presented in Table 3. These data are similar to results seen in HbOC recipients in similar studies, and also reflect antibody titer levels achieved by DPT recipients who participated in other published studies.
TABLE 2

<table>
<thead>
<tr>
<th>Population</th>
<th>Number of SIDS cases</th>
<th>Person-years</th>
<th>Rate/1000 py</th>
<th>95% C.L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDPT recipients</td>
<td>6</td>
<td>3,887</td>
<td>1.5</td>
<td>0.6-3.4</td>
</tr>
<tr>
<td>Kaiser five counties</td>
<td>13</td>
<td>5,390</td>
<td>2.4</td>
<td>1.3-4.1</td>
</tr>
<tr>
<td>Five counties reporting</td>
<td>74</td>
<td>33,900</td>
<td>2.2</td>
<td>1.7-2.7</td>
</tr>
</tbody>
</table>

1) SIDS cases in HDPT recipients identified by county reporting within the five counties above as well as passive reporting by study nurses in other counties
2) Interval between vaccine and SIDS in HDPT recipients: 1.14-26.84 and 68 days
3) Person-time denominator estimated for five counties from estimates of births from each county for each quarter
4) Total number of births at these medical centers during the observation period less follow-up accrued for HDPT infants

A similar study was carried out by a group of investigators in New York state (64). This study involved approximately 150 infants who again were given vaccines, either combined or as separate HbOC and DPT injections, at the age of two, four, and six months. In this study, the emphasis was on immunogenicity rather than safety. Antibody levels were assessed prior to each injection and approximately one month after the third injection. The reason for this reaction was unexplained. It is of interest that other data also suggest that DPT given simultaneously with HibTITER in separate injections, represents a greater immunogenic potential for PRP antibody production in infants than when PRP is given alone (69). However, this observation of synergy cannot be extended to all combinations of conjugate Hib vaccines with DPT.

TABLE 3

Summary of HDPT immunology

<table>
<thead>
<tr>
<th>Antigen</th>
<th>N</th>
<th>GMT</th>
<th>95% C.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbOC</td>
<td>123</td>
<td>8.20</td>
<td>6.12 - 10.89</td>
</tr>
<tr>
<td>Tetanus</td>
<td>120</td>
<td>7.52</td>
<td>6.56 - 8.63</td>
</tr>
<tr>
<td>Diphtheria</td>
<td>112</td>
<td>0.92</td>
<td>0.67 - 1.26</td>
</tr>
<tr>
<td>Pertussis</td>
<td>110</td>
<td>1.10</td>
<td>0.78 - 1.55</td>
</tr>
</tbody>
</table>

1) Percentage of children with antibody titers greater than 1 μg/ml = 89%
2) Elisa assay
3) Vero cell assay
4) Pertussis agglutinin assay

A similar phenomenon of interference was seen when the Haemophilus b conjugate vaccine – tetanus toxoid conjugate, (PRP/T) (ActHIB, Pasteur-Merieux-Connaught) was administered with the DPT vaccine (68). In this study one of three regimens was given to study participants at the age of two, four and six months. Group 1 received DPT mixed in the same syringe as PRP/T; Group 2 received DPT and PRP/T given at separate injection sites and Group 3 received DPT without PRP/T. Serum anti-diphtheria toxoid and anti-tetanus toxoid antibodies were similar in all patients. However, concurrent administration of PRP/T vaccine with DPT vaccine, either in the same syringe or at different sites, interfered with anti-
pertussis responses to the primary series of immunizations. While there is evidence that absorption of PRP/T to an aluminum hydroxide adjuvant may reduce responses to both PRP and tetanus toxoid components of the conjugate vaccines, (77) this physical interaction between vaccines cannot explain the depression of anti-pertussis responses in the group that received DPT and PRP/T vaccines at separate sites. Depression of anti-PRP antibody has also been noted when PRP/T and DPT are given as a combined vaccine (25). Despite clear demonstration of immunologic interference in these studies, antibody levels obtained are still within what are considered protective levels. Therefore the clinical significance of these data is unclear. The biological basis for these observations also remains unexplained.

An acellular pertussis / diptheria / tetanus vaccine (DTaP, Lederle-Praxis Biologicals) combined with HibOC has also been studied (80). This study was a randomized, open-label, multicenter trial in about 400 children in the NCKPMCP. In this study, children aged 18 months plus or minus three months, who received three routine doses of commercial DPT plus three doses of HibOC separated and concurrently in infancy, were randomized to receive one of three doses of DTaP plus HibOC combined or one dose of DTaP and HibOC administered concurrently in separate syringes. Serum was tested for antibodies prior to, and approximately one month after, vaccination in 393 children.

Local and systemic reactions and temperatures within three days post vaccine administration were provided by each child’s parent or guardian on a symptom report form. The results demonstrated that the combined DTaP/HbOC vaccine was both safe and immunogenic (Table 4). There was no significant difference in reactin rate or antibody formation noted from DTaP and HbOC administered separately and concurrently.

TABLE 5
Financial savings in USA with use of Hib conjugate vaccine

- Average cost per case of Hib Disease = $50,000.
- Prior to vaccine use, NCKPMCP, observed an average of 70 cases per year for total cost of $3.5 million.
- 1992 NCKPMCP Hib cost (97% reduction of disease) $50,000.
- Vaccine cost for NCKPMCP birth cohort of 35,000/year is $2.1 million.
- Overall savings with vaccine program within NCKPMCP is therefore more than $1.35 million.
- USA overall savings, in 1992 more than $500,000,000.

2) Northom California Kaiser Permanente Medical Care Program
3) Based on 4,000,000 births/year & 90% reduction in disease

Comment

The use of a conjugate Hib vaccine has virtually eliminated Hib disease in the NCKPMCP population of 2.5 million subscribers. This mimics the effects of conjugate vaccines seen in Finland (27) and presages what is taking place in the entire US population.

To date; about 38,000,000 doses of Hib conjugate vaccine have been distributed (35,000,000 HibOC; 3,000,000 PRP-OMP in the USA). The reported incidence of Hib disease in the USA as of December 31, 1992 has fallen from approximately 18,000 cases per year to less than 1,300 cases in 1992 (85). This dramatic drop in disease rate has also resulted in significant medical care cost savings as demonstrated in Table 5.

This reduction in disease clearly demonstrates how one aspect of preventive medicine, namely the use of vaccine, can both improve the health and welfare of children and simultaneously result in considerable medical cost savings.

The continued success of this program depends on the continued use of conjugate Hib vaccine. In essence, it is important to get the vaccine to the target infant population. There are many barriers in programs devised to achieve high vaccination rates in infants. It is reasonable to assume that combining antigens, necessitating fewer injections for infant protection, will improve vaccination rates. What is also apparent in the data collected to date on combinations of conjugate vaccines with other immunogens is that the fact each combination of antigens is an entity unto itself. The immunological response of such mixtures can not accurately be predicted.

It is also important to emphasize that while no problem has been uncovered to date regarding the safety of antigen combinations, the safety of these products cannot be assumed. It must be established by careful clinical trials.

Conclusion

It is obvious that medical personnel who care for infants and children are participating in an exciting era of preventive medicine. As vaccine development progresses and a variety of antigens, adjuvants and vaccine combinations are proposed for clinical use, at least two points must be kept in mind. First, it would be worthwhile to have available an experimental in vivo model which will predict clinical safety and efficacy. While such techniques have not been developed as yet, an approach to the problem has been initiated (83). Secondly, just as sophistication in vaccine development is progressing, the ability to rapidly collect, collect and understand large amounts of safety and immunologic data is also becoming more and more proficient. The presence of large catchment areas with accurate databases permits pre-FDA licensure testing and post-FDA licensure surveillance with an ever increasing number of subjects. Such large-scale clinical observations will help to assure safety and efficacy prior to licensure, while post-FDA licensure data analysis may reveal previously undetected and rare adverse reactions related to specific vaccinations early on. These types of studies now can and should be carried out.

REFERENCES

Blumberg DA, Mink CM, Cherry JD, et al. Comparison of acellular and
15. ¶isse MF, Saw HD, Ouangre AR, et al. Bacterial meningitis in a pediatric
19. Cochi SL, Broome CV. Vaccine prevention of
21. Committee on Infectious Diseases.
4. Bijimer HA, Van Alphen L. Greenwood BM, et al. The epidemiology of
3. Bijimer HA, World-wide epidemiology of
11-14: Abstract 975.
27. Eskola J, Ronnberg PR, Makela PH. Haemophilus diseases nearly eradicated in Finland.
29. Ferrecio C, Ortiz E,Astroza L, et al. A population-based retrospective
30. Fritzell B. Plotkin S. Efficacy and safety of a
33. Gilbert GL, Clements DA, Broughton SJ, et al. Differences in the immu-
35. Granoff DM, Anderson EL, Osterholm MT, et al. Bacteremia in children under five years of age in
36. Granoff DM, Basdon M. Haemophilus influenzae infections in Fresno County, California: a prospective study of the effects of age, race and contact with a case on incidence of disease.
40. Greenwood B. Epidemiology of acute lower respiratory tract infections, especially those due to Haemophilus influenzae type b in The Gambia, West Africa.
41. Hallon-Yaniv 1, Dagan R. Epidemiology of invasive Haemophilus influenzae type b infections in Bedouins and Jews in Southern Israel.
42. Hanna JN. The epidemiology of invasive Haemophilus influenzae infections in children under five years of age in the Northern Territory: a three year study.
43. Hanna JN, Wild BE. Bacterial meningitis in children under five years of age in Western Australia.
44. Holmes SJ, Granoff DM. The biology of Haemophilus influenzae type b vaccination fa??ure.
49. LaScoles LJ. Rosales SV, Walliver RS, et al. Mechanism underlying the development of meningitis or epiglottitis in children after Haemophilus influenzae type b bacteremia.
50. Lehmann D. Epidemiology of acute lower respiratory tract infections, especially those due to Haemophilus influenzae in Papua New Guinean children.
52. Eskola J, Takaala AK, Kayhty H, et al. Protection achieved by Haemophilus influenzae type b (Hib) conjugate vaccines is better than excepted on the basis of efficacy trials.
54. Eskola J, Takala AK, Kayhty H, et al. Protection achieved by Haemophilus influenzae type b (Hib) conjugate vaccines is better than excepted on the basis of efficacy trials.
56. Eskola J, Takala AK, Kayhty H, et al. Protection achieved by Haemophilus influenzae type b (Hib) conjugate vaccines is better than excepted on the basis of efficacy trials.
58. Eskola J, Takala AK, Kayhty H, et al. Protection achieved by Haemophilus influenzae type b (Hib) conjugate vaccines is better than excepted on the basis of efficacy trials.
60. Eskola J, Takala AK, Kayhty H, et al. Protection achieved by Haemophilus influenzae type b (Hib) conjugate vaccines is better than excepted on the basis of efficacy trials.
62. Eskola J, Takala AK, Kayhty H, et al. Protection achieved by Haemophilus influenzae type b (Hib) conjugate vaccines is better than excepted on the basis of efficacy trials.
64. Eskola J, Takala AK, Kayhty H, et al. Protection achieved by Haemophilus influenzae type b (Hib) conjugate vaccines is better than excepted on the basis of efficacy trials.
66. Eskola J, Takala AK, Kayhty H, et al. Protection achieved by Haemophilus influenzae type b (Hib) conjugate vaccines is better than excepted on the basis of efficacy trials.
68. Eskola J, Takala AK, Kayhty H, et al. Protection achieved by Haemophilus influenzae type b (Hib) conjugate vaccines is better than excepted on the basis of efficacy trials.
70. Eskola J, Takala AK, Kayhty H, et al. Protection achieved by Haemophilus influenzae type b (Hib) conjugate vaccines is better than excepted on the basis of efficacy trials.
72. Eskola J, Takala AK, Kayhty H, et al. Protection achieved by Haemophilus influenzae type b (Hib) conjugate vaccines is better than excepted on the basis of efficacy trials.
74. Eskola J, Takala AK, Kayhty H, et al. Protection achieved by Haemophilus influenzae type b (Hib) conjugate vaccines is better than excepted on the basis of efficacy trials.
76. Eskola J, Takala AK, Kayhty H, et al. Protection achieved by Haemophilus influenzae type b (Hib) conjugate vaccines is better than excepted on the basis of efficacy trials.
78. Eskola J, Takala AK, Kayhty H, et al. Protection achieved by Haemophilus influenzae type b (Hib) conjugate vaccines is better than excepted on the basis of efficacy trials.
80. Eskola J, Takala AK, Kayhty H, et al. Protection achieved by Haemophilus influenzae type b (Hib) conjugate vaccines is better than excepted on the basis of efficacy trials.
82. Eskola J, Takala AK, Kayhty H, et al. Protection achieved by Haemophilus influenzae type b (Hib) conjugate vaccines is better than excepted on the basis of efficacy trials.
84. Eskola J, Takala AK, Kayhty H, et al. Protection achieved by Haemophilus influenzae type b (Hib) conjugate vaccines is better than excepted on the basis of efficacy trials.
86. Eskola J, Takala AK, Kayhty H, et al. Protection achieved by Haemophilus influenzae type b (Hib) conjugate vaccines is better than excepted on the basis of efficacy trials.
88. Eskola J, Takala AK, Kayhty H, et al. Protection achieved by Haemophilus influenzae type b (Hib) conjugate vaccines is better than excepted on the basis of efficacy trials.
90. Eskola J, Takala AK, Kayhty H, et al. Protection achieved by Haemophilus influenzae type b (Hib) conjugate vaccines is better than excepted on the basis of efficacy trials.
92. Eskola J, Takala AK, Kayhty H, et al. Protection achieved by Haemophilus influenzae type b (Hib) conjugate vaccines is better than excepted on the basis of efficacy trials.
93. Eskola J, Peltonen H, Kayhty H, et al. Finnish efficacy trials with Haemophilus influen...
Conjugate Hib Vaccines and their Combinations: Present Success and Future Possibilities

106. WHO expanded programme on immunization training course on measuring and management. National Priorities.

Correspondência: Henry R. Shinefield
Kaiser Permanente Vaccine Study Center
2200 O'Farrel Street
San Francisco, CA 94175